Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
medRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645094

RESUMO

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a novel syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 119 individuals with NDD. The vast majority of individuals (77.3%) have the same highly recurrent single base-pair insertion (n.64_65insT). We estimate that variants in this region explain 0.41% of individuals with NDD. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to its contiguous counterpart RNU4-1 and other U4 homologs, supporting RNU4-2's role as the primary U4 transcript in the brain. Overall, this work underscores the importance of non-coding genes in rare disorders. It will provide a diagnosis to thousands of individuals with NDD worldwide and pave the way for the development of effective treatments for these individuals.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38605555

RESUMO

AIM: Recent rapid advances in genomics are revolutionising patient diagnosis and management of genetic conditions. However, this has led to many challenges in service provision, education and upskilling requirements for non-genetics health-care professionals and remuneration for genomic testing. In Australia, Medicare funding with a Paediatric genomic testing item for patients with intellectual disability or syndromic features has attempted to address this latter issue. The Sydney Children's Hospitals Network - Westmead (SCHN-W) Clinical Genetics Department established Paediatric and Neurology genomic multidisciplinary team (MDT) meetings to address the Medicare-specified requirement for discussion with clinical genetics, and increasing genomic testing advice requests. METHODS: This SCHN-W genomic MDT was evaluated with two implementation science frameworks - the RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) and GMIR - Genomic Medicine Integrative Research frameworks. Data from June 2020 to July 2022 were synthesised and evaluated, as well as process mapping of the MDT service. RESULTS: A total of 205 patients were discussed in 34 MDT meetings, facilitating 148 genomic tests, of which 73 were Medicare eligible. This was equivalent to 26% of SCHN-W genetics outpatient activity, and 13% of all Medicare-funded paediatric genomic testing in NSW. 39% of patients received a genetic diagnosis. CONCLUSION: The genomic MDT facilitated increased genomic testing at a tertiary paediatric centre and is an effective model for mainstreaming and facilitating precision medicine. However, significant implementation issues were identified including cost and sustainability, as well as the high level of resourcing that will be required to scale up this approach to other areas of medicine.

3.
Eur J Hum Genet ; 32(4): 381-391, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378794

RESUMO

Due to the increasing complexity of genomic data interpretation, and need for close collaboration with clinical, laboratory, and research expertise, genomics often requires a multidisciplinary team (MDT) approach. This systematic review aims to establish the evidence for effectiveness of the genomic multidisciplinary team, and the implementation components of this model that can inform precision care. MEDLINE, Embase and PsycINFO databases were searched in 2022 and 2023. We included qualitative and quantitative studies of the genomic MDT, including observational and cohort studies, for diagnosis and management, and implementation outcomes of effectiveness, adoption, efficiency, safety, and acceptability. A narrative synthesis was mapped against the Genomic Medicine Integrative Research framework. 1530 studies were screened, and 17 papers met selection criteria. All studies pointed towards the effectiveness of the genomic MDT approach, with 10-78% diagnostic yield depending on clinical context, and an increased yield of 6-25% attributed to the MDT. The genomic MDT was found to be highly efficient in interpretation of variants of uncertain significance, timeliness for a rapid result, made a significant impact on management, and was acceptable for adoption by a wide variety of subspecialists. Only one study utilized an implementation science based approach. The genomic MDT approach appears to be highly effective and efficient, facilitating higher diagnostic rates and improved patient management. However, key gaps remain in health systems readiness for this collaborative model, and there is a lack of implementation science based research especially addressing the cost, sustainability, scale up, and equity of access.


Assuntos
Genômica , Equipe de Assistência ao Paciente , Humanos
4.
Genet Med ; 26(5): 101076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258669

RESUMO

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Assuntos
Sequenciamento do Exoma , Exoma , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Exoma/genética , Sequenciamento do Exoma/economia , Estudos de Coortes , Testes Genéticos/economia , Testes Genéticos/métodos , Sequenciamento Completo do Genoma/economia , Criança , Genoma Humano/genética , Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Pré-Escolar
6.
Med J Aust ; 219(2): 70-76, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37301731

RESUMO

OBJECTIVES: To estimate the health care and societal costs of inherited retinal diseases (IRDs) in Australia. DESIGN, SETTING, PARTICIPANTS: Microsimulation modelling study based on primary data - collected in interviews of people with IRDs who had ophthalmic or genetic consultations at the Children's Hospital at Westmead or the Save Sight Institute (both Sydney) during 1 January 2019 - 31 December 2020, and of their carers and spouses - and linked Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Schedule (PBS) data. MAIN OUTCOME MEASURES: Annual and lifetime costs for people with IRDs and for their carers and spouses, grouped by payer (Australian government, state governments, individuals, private health insurance) and type (health care costs; societal costs: social support, National Disability Insurance Scheme (NDIS), income and taxation, costs associated with caring for family members with IRDs); estimated annual national cost of IRDs. RESULTS: Ninety-four people (74 adults, 20 people under 18 years; 55 girls and women [59%]) and 30 carers completed study surveys (participation rate: adults, 66%; children, 66%; carers, 63%). Total estimated lifetime cost was $5.2 million per person with an IRD, of which 87% were societal and 13% health care costs. The three highest cost items were lost income for people with IRDs ($1.4 million), lost income for their carers and spouses ($1.1 million), and social spending by the Australian government (excluding NDIS expenses: $1.0 million). Annual costs were twice as high for people who were legally blind as for those with less impaired vision ($83 910 v $41 357 per person). The estimated total annual cost of IRDs in Australia was $781 million to $1.56 billion. CONCLUSION: As the societal costs associated with IRDs are much larger than the health care costs, both contributors should be considered when assessing the cost-effectiveness of interventions for people with IRDs. The increasing loss of income across life reflects the impact of IRDs on employment and career opportunities.


Assuntos
Programas Nacionais de Saúde , Doenças Retinianas , Idoso , Adulto , Criança , Humanos , Feminino , Adolescente , Austrália , Emprego , Custos de Cuidados de Saúde , Efeitos Psicossociais da Doença
9.
Ophthalmol Sci ; 2(1): 100106, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36246188

RESUMO

Purpose: To evaluate the impact of inherited retinal diseases (IRDs) on quality of life (QoL) using multiattributable health utilities derived from primary patient data. Design: Cross-sectional observational study. Participants: Seventy adult patients (mean age, 42.7 years) with IRD recruited from state-wide services in Australia. Methods: Health utility values were calculated from the Assessment of Quality of Life 8-Dimension (AQoL-8D). Linear regressions were used to analyze the relationship between the 25-item and 39-item National Eye Institute Visual Function Questionnaires (NEI-VFQ-25 and NEI-VFQ-39, respectively) and health utilities from the AQoL-8D. Main Outcome Measures: The AQoL-8D utility values were compared between the IRD cohort and population norms. Regressions were used to determine explanatory power of the NEI-VFQ-25 and NEI-VFQ-39 for health utilities from the AQoL-8D. Results: Average health-related utility for patients with IRD was 0.58, significantly lower than population norms of 0.80. The IRD patient scores were significantly lower than population norms for all 8 domains of the AQoL-8D. Regressions showed a statistically significant relationship between the NEI-VFQ-39 and AQoL-8D, with the NEI-VFQ-39 and other clinical data explaining up to 73% of the variation in AQoL-8D values and 69% of the variation in the NEI-VFQ-25 values. Conclusions: Patients with IRD have significantly lower utility values across all dimensions of QoL, with the largest differences in independent living, senses, and relationships. The NEI-VFQ-25 and NEI-VFQ-39 are highly correlated with overall AQoL-8D utilities and, combined with other data, can reasonably estimate QoL utilities required for cost-effectiveness studies.

10.
Genet Med ; 24(9): 1952-1966, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916866

RESUMO

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Domínios Proteicos , Sequenciamento do Exoma
11.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409265

RESUMO

The inherited retinal dystrophies (IRDs) are a clinically and genetically complex group of disorders primarily affecting the rod and cone photoreceptors or other retinal neuronal layers, with emerging therapies heralding the need for accurate molecular diagnosis. Targeted capture and panel-based strategies examining the partial or full exome deliver molecular diagnoses in many IRD families tested. However, approximately one in three families remain unsolved and unable to obtain personalised recurrence risk or access to new clinical trials or therapy. In this study, we investigated whole genome sequencing (WGS), focused assays and functional studies to assist with unsolved IRD cases and facilitate integration of these approaches to a broad molecular diagnostic clinical service. The WGS approach identified variants not covered or underinvestigated by targeted capture panel-based clinical testing strategies in six families. This included structural variants, with notable benefit of the WGS approach in repetitive regions demonstrated by a family with a hybrid gene and hemizygous missense variant involving the opsin genes, OPN1LW and OPN1MW. There was also benefit in investigation of the repetitive GC-rich ORF15 region of RPGR. Further molecular investigations were facilitated by focused assays in these regions. Deep intronic variants were identified in IQCB1 and ABCA4, with functional RNA based studies of the IQCB1 variant revealing activation of a cryptic splice acceptor site. While targeted capture panel-based methods are successful in achieving an efficient molecular diagnosis in a proportion of cases, this study highlights the additional benefit and clinical value that may be derived from WGS, focused assays and functional genomics in the highly heterogeneous IRDs.


Assuntos
Distrofias Retinianas , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Ligação a Calmodulina/genética , Exoma , Proteínas do Olho/genética , Humanos , Mutação , Linhagem , Sítios de Splice de RNA , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma
13.
J Pers Med ; 12(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35330501

RESUMO

The RPGR gene encodes Retinitis Pigmentosa GTPase Regulator, a known interactor with ciliary proteins, which is involved in maintaining healthy photoreceptor cells. Variants in RPGR are the main contributor to X-linked rod-cone dystrophy (RCD), and RPGR gene therapy approaches are in clinical trials. Hence, elucidation of the pathogenicity of novel RPGR variants is important for a patient therapy opportunity. Here, we describe a novel intronic RPGR variant, c.1415 − 9A>G, in a patient with RCD, which was classified as a variant of uncertain significance according to current clinical diagnostic criteria. The variant lay several base pairs intronic to the canonical splice acceptor site, raising suspicion of an RPGR RNA splicing abnormality and consequent protein dysfunction. To investigate disease causation in an appropriate disease model, induced pluripotent stem cells were generated from patient fibroblasts and differentiated to retinal pigment epithelium (iPSC-RPE) and retinal organoids (iPSC-RO). Abnormal RNA splicing of RPGR was demonstrated in patient fibroblasts, iPSC-RPE and iPSC-ROs, leading to a predicted frameshift and premature stop codon. Decreased RPGR expression was demonstrated in these cell types, with a striking loss of RPGR localization at the ciliary transitional zone, critically in the photoreceptor cilium of the patient iPSC-ROs. Mislocalisation of rhodopsin staining was present in the patient's iPSC-RO rod photoreceptor cells, along with an abnormality of L/M opsin staining affecting cone photoreceptor cells and increased photoreceptor apoptosis. Additionally, patient iPSC-ROs displayed an increase in F-actin expression that was consistent with an abnormal actin regulation phenotype. Collectively, these studies indicate that the splicing abnormality caused by the c.1415 − 9A>G variant has an impact on RPGR function. This work has enabled the reclassification of this variant to pathogenic, allowing the consideration of patients with this variant having access to gene therapy clinical trials. In addition, we have identified biomarkers of disease suitable for the interrogation of other RPGR variants of uncertain significance.

14.
J Paediatr Child Health ; 58(1): 8-15, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34427008

RESUMO

Monogenic rare disorders contribute significantly to paediatric morbidity and mortality, and elucidation of the underlying genetic cause may have benefits for patients, families and clinicians. Advances in genomic technology have enabled diagnostic yields of up to 50% in some paediatric cohorts. This has led to an increase in the uptake of genetic testing across paediatric disciplines. This can place an increased burden on paediatricians, who may now be responsible for interpreting and explaining test results to patients. However, genomic results can be complex, and sometimes inconclusive for the ordering paediatrician. Results may also cause uncertainty and anxiety for patients and their families. The paediatrician's genetic literacy and knowledge of genetic principles are therefore critical to inform discussions with families and guide ongoing patient care. Here, we present four hypothetical case vignettes where genomic testing is undertaken, and discuss possible results and their implications for paediatricians and families. We also provide a list of key terms for paediatricians.


Assuntos
Genômica , Pediatras , Criança , Testes Genéticos , Humanos
15.
Hum Genet ; 140(12): 1709-1731, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34652576

RESUMO

Microtubules are formed from heterodimers of alpha- and beta-tubulin, each of which has multiple isoforms encoded by separate genes. Pathogenic missense variants in multiple different tubulin isoforms cause brain malformations. Missense mutations in TUBB3, which encodes the neuron-specific beta-tubulin isotype, can cause congenital fibrosis of the extraocular muscles type 3 (CFEOM3) and/or malformations of cortical development, with distinct genotype-phenotype correlations. Here, we report fourteen individuals from thirteen unrelated families, each of whom harbors the identical NM_006086.4 (TUBB3):c.785G>A (p.Arg262His) variant resulting in a phenotype we refer to as the TUBB3 R262H syndrome. The affected individuals present at birth with ptosis, ophthalmoplegia, exotropia, facial weakness, facial dysmorphisms, and, in most cases, distal congenital joint contractures, and subsequently develop intellectual disabilities, gait disorders with proximal joint contractures, Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), and a progressive peripheral neuropathy during the first decade of life. Subsets may also have vocal cord paralysis, auditory dysfunction, cyclic vomiting, and/or tachycardia at rest. All fourteen subjects share a recognizable set of brain malformations, including hypoplasia of the corpus callosum and anterior commissure, basal ganglia malformations, absent olfactory bulbs and sulci, and subtle cerebellar malformations. While similar, individuals with the TUBB3 R262H syndrome can be distinguished from individuals with the TUBB3 E410K syndrome by the presence of congenital and acquired joint contractures, an earlier onset peripheral neuropathy, impaired gait, and basal ganglia malformations.


Assuntos
Paralisia Facial/genética , Fibrose/genética , Mutação , Oftalmoplegia/genética , Doenças do Sistema Nervoso Periférico/genética , Tubulina (Proteína)/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Substituição de Aminoácidos , Arginina , Criança , Pré-Escolar , Paralisia Facial/diagnóstico , Paralisia Facial/fisiopatologia , Feminino , Fibrose/diagnóstico , Fibrose/fisiopatologia , Histidina , Humanos , Lactente , Masculino , Oftalmoplegia/diagnóstico , Oftalmoplegia/fisiopatologia , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/fisiopatologia , Síndrome , Adulto Jovem
16.
Genet Med ; 23(12): 2415-2425, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34400813

RESUMO

PURPOSE: Biallelic hypomorphic variants in PPA2, encoding the mitochondrial inorganic pyrophosphatase 2 protein, have been recently identified in individuals presenting with sudden cardiac death, occasionally triggered by alcohol intake or a viral infection. Here we report 20 new families harboring PPA2 variants. METHODS: Synthesis of clinical and molecular data concerning 34 individuals harboring five previously reported PPA2 variants and 12 novel variants, 11 of which were functionally characterized. RESULTS: Among the 34 individuals, only 6 remain alive. Twenty-three died before the age of 2 years while five died between 14 and 16 years. Within these 28 cases, 15 died of sudden cardiac arrest and 13 of acute heart failure. One case was diagnosed prenatally with cardiomyopathy. Four teenagers drank alcohol before sudden cardiac arrest. Progressive neurological signs were observed in 2/6 surviving individuals. For 11 variants, recombinant PPA2 enzyme activities were significantly decreased and sensitive to temperature, compared to wild-type PPA2 enzyme activity. CONCLUSION: We expand the clinical and mutational spectrum associated with PPA2 dysfunction. Heart failure and sudden cardiac arrest occur at various ages with inter- and intrafamilial phenotypic variability, and presentation can include progressive neurological disease. Alcohol intake can trigger cardiac arrest and should be strictly avoided.


Assuntos
Cardiomiopatias , Morte Súbita Cardíaca , Adolescente , Alelos , Cardiomiopatias/genética , Pré-Escolar , Morte Súbita Cardíaca/etiologia , Humanos , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Proteínas Mitocondriais/genética , Mutação
17.
Hum Mutat ; 42(9): 1173-1183, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34101287

RESUMO

Congenital cataracts are one of the major causes of childhood-onset blindness around the world. Genetic diagnosis provides benefits through avoidance of unnecessary tests, surveillance of extraocular features, and genetic family information. In this study, we demonstrate the value of genome sequencing in improving diagnostic yield in congenital cataract patients and families. We applied genome sequencing to investigate 20 probands with congenital cataracts. We examined the added value of genome sequencing across a total cohort of 52 probands, including 14 unable to be diagnosed using previous microarray and exome or panel-based approaches. Although exome or genome sequencing would have detected the variants in 35/52 (67%) of the cases, specific advantages of genome sequencing led to additional diagnoses in 10% (5/52) of the overall cohort, and we achieved an overall diagnostic rate of 77% (40/52). Specific benefits of genome sequencing were due to detection of small copy number variants (2), indels in repetitive regions (2) or single-nucleotide variants (SNVs) in GC-rich regions (1), not detectable on the previous microarray, exome sequencing, or panel-based approaches. In other cases, SNVs were identified in cataract disease genes, including those newly identified since our previous study. This study highlights the additional yield of genome sequencing in congenital cataracts.


Assuntos
Catarata , Exoma , Catarata/diagnóstico , Catarata/genética , Mapeamento Cromossômico , Variações do Número de Cópias de DNA/genética , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento do Exoma
18.
Neurol Genet ; 7(1): e554, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33977140

RESUMO

OBJECTIVE: To describe the diagnostic utility of whole-genome sequencing and RNA studies in boys with suspected dystrophinopathy, for whom multiplex ligation-dependent probe amplification and exomic parallel sequencing failed to yield a genetic diagnosis, and to use remnant normal DMD splicing in 3 families to define critical levels of wild-type dystrophin bridging clinical spectrums of Duchenne to myalgia. METHODS: Exome, genome, and/or muscle RNA sequencing was performed for 7 males with elevated creatine kinase. PCR of muscle-derived complementary DNA (cDNA) studied consequences for DMD premessenger RNA (pre-mRNA) splicing. Quantitative Western blot was used to determine levels of dystrophin, relative to control muscle. RESULTS: Splice-altering intronic single nucleotide variants or structural rearrangements in DMD were identified in all 7 families. Four individuals, with abnormal splicing causing a premature stop codon and nonsense-mediated decay, expressed remnant levels of normally spliced DMD mRNA. Quantitative Western blot enabled correlation of wild-type dystrophin and clinical severity, with 0%-5% dystrophin conferring a Duchenne phenotype, 10% ± 2% a Becker phenotype, and 15% ± 2% dystrophin associated with myalgia without manifesting weakness. CONCLUSIONS: Whole-genome sequencing relied heavily on RNA studies to identify DMD splice-altering variants. Short-read RNA sequencing was regularly confounded by the effectiveness of nonsense-mediated mRNA decay and low read depth of the giant DMD mRNA. PCR of muscle cDNA provided a simple, yet informative approach. Highly relevant to genetic therapies for dystrophinopathies, our data align strongly with previous studies of mutant dystrophin in Becker muscular dystrophy, with the collective conclusion that a fractional increase in levels of normal dystrophin between 5% and 20% is clinically significant.

19.
Genet Med ; 23(7): 1356-1365, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33824503

RESUMO

PURPOSE: Widespread, quality genomics education for health professionals is required to create a competent genomic workforce. A lack of standards for reporting genomics education and evaluation limits the evidence base for replication and comparison. We therefore undertook a consensus process to develop a recommended minimum set of information to support consistent reporting of design, development, delivery, and evaluation of genomics education interventions. METHODS: Draft standards were derived from literature (25 items from 21 publications). Thirty-six international experts were purposively recruited for three rounds of a modified Delphi process to reach consensus on relevance, clarity, comprehensiveness, utility, and design. RESULTS: The final standards include 18 items relating to development and delivery of genomics education interventions, 12 relating to evaluation, and 1 on stakeholder engagement. CONCLUSION: These Reporting Item Standards for Education and its Evaluation in Genomics (RISE2 Genomics) are intended to be widely applicable across settings and health professions. Their use by those involved in reporting genomics education interventions and evaluation, as well as adoption by journals and policy makers as the expected standard, will support greater transparency, consistency, and comprehensiveness of reporting. Consequently, the genomics education evidence base will be more robust, enabling high-quality education and evaluation across diverse settings.


Assuntos
Genômica , Relatório de Pesquisa , Consenso , Técnica Delphi , Humanos , Participação dos Interessados
20.
J Paediatr Child Health ; 57(4): 477-483, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33566436

RESUMO

Genomic testing for a genetic diagnosis is becoming standard of care for many children, especially those with a syndromal intellectual disability. While previously this type of specialised testing was performed mainly by clinical genetics teams, it is increasingly being 'mainstreamed' into standard paediatric care. With the introduction of a new Medicare rebate for genomic testing in May 2020, this type of testing is now available for paediatricians to order, in consultation with clinical genetics. Children must be aged less than 10 years with facial dysmorphism and multiple congenital abnormalities or have global developmental delay or moderate to severe intellectual disability. This rebate should increase the likelihood of a genetic diagnosis, with accompanying benefits for patient management, reproductive planning and diagnostic certainty. Similar to the introduction of chromosomal microarray into mainstream paediatrics, this genomic testing will increase the number of genetic diagnoses, however, will also yield more variants of uncertain significance, incidental findings, and negative results. This paper aims to guide paediatricians through the process of genomic testing, and represents the combined expertise of educators, clinical geneticists, paediatricians and genomic pathologists around Australia. Its purpose is to help paediatricians navigate choosing the right genomic test, consenting patients and understanding the possible outcomes of testing.


Assuntos
Deficiência Intelectual , Pediatria , Idoso , Austrália , Criança , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Testes Genéticos , Genômica , Humanos , Deficiência Intelectual/genética , Programas Nacionais de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA